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The left-handed electron and muon neutrinos are considered to be Majorana 
neutrinos with equal mass. They have opposite CP parities and are equivalent 
to a single Dirae neutrino. These neutrinos are shown to have a Majorana mass 
of about 6.5 eV. The relatively large mass of their charged leptons is due to 
their ~/5 coupling with the Higgs scalars. By expressing the Higgs scalars as 
Clebsch-Gordon type of combinations of Z and D neutral vector bosons with 
appropriate quantum numbers, it is shown that 2memJ(m 2 + m 2) = (gv/gA)2e~, 
where gv and gA are the vector and axial vector coupling constants, respectively, 
of Z (or D) with the leptons e and i~. Weinberg mixing parameters XL = e21g2L 
and xR = e21g 2 are determined to be 0.2254 and 0.2746, respectively. In the 
quark sector the Cabibbo angle is about 13~ ! '  and the masses of t and b quarks 
are found to be respectively 134.2 and 4.69 GeV. 

1. I N T R O D U C T I O N  

The nature o f  weak  interact ions appears  to be in t imate ly  connected  wi th  
proper t ies  o f  the neutrino.  W h e n  V - A  theory  was p roposed  by Sudarshan 
and Marshak  (Marshak  and Sudarshan,  1958) they based  their  arguments  on 
the assumpt ion  that neutr inos are massless .  The  s tandard mode l  (Weinberg,  
1967) o f  e l ec t roweak  interact ions provides  a sound mathemat ica l  basis  for  
the V - A  theory. Mohapa t r a  and Senjanovic  attribute the smallness  o f  neutr ino 
mass  to the suppress ion o f  V + A currents  (Mohapat ra  and Senjanovic ,  1980; 
Mohapatra ,  1981). 

In this paper  we show that PeL and V~L are Majorana  neutrinos wi th  
equal mass  and oppos i te  C P  parit ies.  These  two Majorana  neutrinos are 
equivalent  to a s ingle Dirac neutr ino.  The  mass  o f  the neutr ino is computed  
to be about  6.5 eV. The  crucial  ingredient  responsible  for our  result  is the 
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presumption that the Higgs scalars that generate masses are Clebsch-Gordon 
type combinations of Z and D bosons, with appropriate quantum numbers. 
Here Zand  D are the neutral bosons of the SU(2)L • SU(2)R X U(1) triangle 
anomaly-free weak interaction with two neutral currents (Raju, 1985, 1986a). 

The aim of this paper is to find the masses of almost all fermions. Our 
considerations are based mainly on the following: 

(1) If Z (or D) is coupled to the vector or axial vector currents of the 
charged particles with the coupling constants (gv)q and (gA)q, then the coupling 
constants of the Higgs scalars with ~q or q~/5 q for the generation of the 
mass of q must, respectively, be proportional to (gv) 2 and (gA)q 2, where q is 
the charged fermion. To justify it we propose that Higgs scalars are Clebsch- 
Gordon type combinations of Z and D with appropriate quantum numbers. 

(ii) The neutrinos VeL and V~L are Majorana-type neutrinos with equal 
mass and opposite CP parities. They conserve Zeldovich, Konopinsky, and 
Mahmoud (ZKM) lepton charge, according to which one lepton charge, 
the same for e -  and p~+, is conserved (Zeldovich, 1952; Konopinsky and 
Mahmoud, 1953). 

(iii) The results should be extendable to other fermions. 
The paper is organized as follows: In Section 2 we summarize the main 

features of Dirac and Majorana mass terms. Section 3 presents the ZKM 
scheme. In Section 4 we determine the exact expression for the electron and 
muon masses. In Section 5 we relate the mass-determining constants to the 
vector and axial vector current coupling constants of Z (or D). In this section 
the neutrino mass and Weinberg mixing parameters are evaluated. In Section 
6 the Cabibbo angle and the masses of the t and b quarks are determined. 
Section 7 contains a summary of our results. 

2. DIRAC AND MAJORANA MASS TERMS 

In a theory containing both left-handed (LH) and right-handed (RH) 
neutrinos of a given flavor, the neutrino fields are expressible as t~}~R ) = 
FL(R)d~ (v), where the projectors FL(R) = �89 +--- ?/5) ensure that the massless 
fields ~ R )  have just two components. It is possible to construct a Hermitian, 
Lorentz-invariant, lepton-conserving interaction which couples the two 
chiralities, 

Loirac = --mo[~[v)Oi~ ) + ~v)~v)] 

= - m o ~ ) ~  (~) (2.1) 

where the field 0~) is now a four-component entity. The lepton conservation 
is ensured by the invariance of Loira c under the field transformations 
qJL ---> e iA~bL and OR --> e/AOR. Such an interaction is said to give rise to a 
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Dirac contribution to fermion mass and in the standard model it is this 
mechanism (via the Higgs effect) which gives rise to fermion masses. Of 
course, if the field gJ~) does not exist, then no such construction is possible. 
This is why neutrinos are massless in the standard model. 

A logically independent source of neutrino mass called a Majorana 
contribution is available even in the absence of  right-handed neutrinos. Let 
t~L and dgR be LH and RH fields. In addition, let us consider 

( , 0  

where C satisfies the conditions 

C~lrC - I =  - ' y ~ ,  C + C  = 1, 

It follows from (2.2) and (2.3) that 

= % 

(qJR) c = C~  r,  (2.2) 

C r = - C ,  C - t ~ , s C  = "y~. 

(2.3) 

(~R)  c = - - I I /Tc  -1,  (2 .4)  

The field (I]/L(R)) C transforms as (0R(L)) under the proper Lorentz transforma- 
tions. It is not difficult to show that (OL) c is a RH field, while (~R) c is a LH 
field (Bilenkey and Petcov, 1987). The Majorana mass term is 

LMajorana = --mM['~J L + H.c.]. (2.5) 

Although it is Lorentz invariant and Hermitian, it does not conserve lepton 
number. The mass term was first considered by Gribov and Pontecorovo (see 
Bilenkey and Petcov, 1987). 

3. THE Z K M  SCHEME 

Let 

{ "l~ eL ~ 
VL = kVr (3.1) 

where VeL and V,L are, respectively, the LH neutrino fields corresponding to 
the electon and muon. The existing experimental data are not incompatible 
with the assumption that to the charged leptons (e.g., e and I~) there corres- 
ponds one four-component neutrino whose LH and RH components enter 
into weak lepton currents. We have in mind the scheme of Zeldovich, Kono- 
pinsky, and Mahmoud (ZKM), according to which one lepton charge, the 
same for e -  and ~+, is conserved. The charged lepton current has in the 
ZKM scheme the form, 

j +  = 2(~L~/aeL + ~[~/Ma, L), (3.2) 

where vf~ = �89 + ~/5) v c and v c = C ~  x. 
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The electron and muon neutrinos are, in the ZKM scheme, LH neutrino 
and LH antineutrino, respectively. It can be shown that the CP parities the 
Majorana particles can assume are _i ,  and that the relative CP parities of 
Majorana neutrinos are observable quantities. In the present case let 

LMajorana = --I(pL)CMv L + H.c., (3.3) 

where M is a symmetric 2 • 2 matrix. We shall assume here that the CP 
invariance holds in the leptonic sector. One has then M* = M. Let 

where a~, b, and a2 are real parameters. Then (3.3) can be written as 

LMajorana = " l { al('~eL)C('VeL ) + a2(Vp.L)C(Vp.L) 

Jr b [(I~eL)C(pI~L) "1- (I~L)C(PeL)]} --k H.C. (3.5) 

Let us consider this Majorana mass term, with 

a] = a 2 = 0  and b > 0  (3.6) 

It is clear that the masses of  the Majorana neutrinos coincide, 

ml.2 = b = m, (3.7) 

while their CP parities are opposite, 

"qce(X0 = i; "qcP(X2) = - i .  (3.8) 

When the conditions (3.7) and (3.8) are fulfilled, the Majorana mass term is 
reduced to a Dirac mass term. We then have 

LM = --ira [(V~L)CV,L + (V,L)CV~.L] + H.c. (3.9) 

The Lagrangian (3.9) is invariant with respect to the gauge transformations 

VeL(X) --'> V'eL(X) = e iA'PeL(X), 

Vp.L(X ) ~ P~L(X) = e -iAI)p.L(X), (3.10) 

where A is a constant parameter. This invariance implies that the mass term 
(3.9) is a Dirac mass term. Indeed, let us introduce the field v(x) so that 

VL = VeL; VR = (V~L) c. (3.11) 

From equations (3.9) and (3.11) we obtain, 

LM = - m ~ v ,  (3.12) 
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where v(x) is a four-component Dirac field. If  simultaneously we perform 
the following transformations of the electron and muon fields, 

e(x) ---> e'(x) = eiae(x), 

~(x) ---> p/(x) = e-iap~(x), (3.13) 

the total Lagrangian of the system obviously will not change. This invariance 
implies that the lepton charge L', equal to + 1 for e -  and Ve and to - 1  for 
p~- and v~ (and to zero for all other particles), is conserved. 

4. ELECTRON-MUON MASSES 

In the standard model, the masses are generated by spontaneous symme- 
try breaking. In this case, the simplest form of the Higgs mechanism requires 
a neutral particle called the Higgs boson to exist. So far the Higgs boson has 
not been found. Suppose the electroweak model is based on the gauge group 
SU(2) • SU(2)a • U(1). In that case we will have two neutral currents. In 
addition to the standard Z boson, we will have one more neutral boson known 
as the D boson (one may call them Zl and Z2). In this gauge model we need 
at least two Higgs scalars. Let these Higgs bosons be ~bL and ~b R corresponding 
to the SU(2)L • SU(2)R • U(I), with 

d~L = ~bL + VL, ~ba = ~b~ + VR, and (~bL) = (~b~t) = 0. 
(4.1) 

In addition to these let there be a Higgs quartet ~b0 such that 

where u3, v3, VL, and VR are real VEVs. The Lagrangian is given by 

_ 1 - T 3  ~ Ve 

In (4.3) h3 and h;  are real and ~o = "r200o'rz. The 'r's are Pauli matrices. 
Equation (4.3) can be summarized with the following mass matrix: 

(Pe e) ( -h3"3 h3"113 I 
-L I  = ('Pc, F)M , where M = \ h~v3 h3u3}" 
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The matrix M M  § is automatically diagonal. Until now ve and e, which are 
mass eigenstates, have equal mass m, where, 

2 2 h;2v])l/2. m = (h 3u3 Jr- (4.4) 

We use an exactly identical Lagrangian for the muon and its neutrino; then 
they will have the same mass m. In view of (3.11), 

m ( ~ e v e  + ~v.vv.) =- m [(V~L)CVeL + (~L)~V~L + H.C.]. 

The charged leptons e and p. are coupled to d~L and ~b R and the neutrinos 
have no coupling whatsoever with these scalars. This part of the Lagrangian 
is given by 

1-.2 = --[iaL-d~lse~L + iaR-d~lsedpR + ibL~/sl-c~bL + ibR~/Sla,~bR], (4.5) 

where aL, bE, aR, and bR are real constants. We add/--2 to LI. Let us first 
examine the electron mass part of (4.5) along with (4.3) after spontaneous 
symmetry breaking. The electron part is 

- m ~ e  - iaL'e'yseVL -- iaRF'fseVR -- iaLe'ysdp~ -- iaR-~'ysedp~, (4.6) 

where the very first term is the contribution of (4.3). 
Given a Dirac field, say ~, the Hermitian scalar and pseudoscalar ~ 

and t~/5~ have opposite CP and T transformation properties. (In this respect 
they are unlike the vector and axial vector.) The C P  violation is now caused 
by the exchange of ~LR) fields. Since the coupling of Higgs fields is usually 
rather small, it is possible to arrange for the C P  violation to be of roughly 
milliweak magnitude (Bailen and Love, 1974; Mohapatra, 1981). Let 

e = exp(-�89 (4.7) 

where or1 is a real parameter. Vector or axial vector interactions are unaffected 
by this transformation. We choose ot 1 in such a way that the constant coeffi- 
cient of ~'~/5e' is zero. Thus, (4.6) gives 

- [m cos Ctl + (aLVL + aaVR)sin eq]F'e' 

- [ - i m  sin oq + i ( a L V  L + aRVR)COS Otl]~'~/se' 

- -  aLF'(sin o t l +  i~/scos otl)e'~b[ 

- aRF'(sin oq + i~/scos Otl)e'~b~, (4.8) 

and we set the coefficient of the second term to zero to yield, 

(aLV L + aRVR) 
tan oq = (4.9) 

m 
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Using (4.9) in the very first line, we note that, 

m 2 = m 2 + (aLVL + aRVR) 2 = m2sec2eq. 

Without any loss of generality we now define, 

where 

aRVR~ 
aoVL = aLVL 1 + aLVL ], 

aL(1 + aRVR] ao = aLVL}" 

(4.10) 

with 

If one wishes, one may factorize aRV R such that, in place of  MWL, instead 
MwR (WR-boson mass) appears in the ultimate expression. The mass of  the 
electron is now given by (Raju, 1985, 1986a-c, 1987) 

m 2 = m  2 + 2 2 aoVLo (4.12) 

where 

From our analysis it is clear m represents the Majorana mass of  the neutrinos, 
which is quite small. So (4.12) shows that me 2 is proportional to M~VL because 
of V~. If VR is factorized out in (4.11), me 2 can be shown to be proportional 
to M2wR. In an exactly similar fashion to the case of  the electron, (4.5) leads 
in the case of the muon to, 

m 2 m 2 +  2 2 = b0V L, (4.13) 

bRVR ~ 
bo = bE 1 + bEVEl' 

= exp(-liot2~/5)lx ', (4.15) 

tan or2 = (bLVL + bRVR)/m. (4.16) 

In (4.15) and (4.13) ao 4:b0 since m~ is not equal to m 2. We may arrange 
it such that a~V 2 and 2 2 boV L contribute a term - m  2 in (4.12) and (4.13). With 
this in mind and without any loss of generality we can write, 

ag- V~ B(1 - A )  - , ( 4 . 1 7 )  

(4.14) 

(4.11) 



2944 Raju 

and 

b ~ -  V ~  B(1 + A ) -  . (4.18) 

Here MWL is the mass of the charged W-boson of the standard model, and B 
and A are constants. In place of the two unknowns a0 and b0 we now have 
two other unknowns B and A. We presume that the parameter m is known. 
Inserting (4.17) and (4.18) into (4.12) and (4.13), we find that 

m 2 = mMwLB(1 - A), (4.19) 

m~ = mMwLB(1 + a). (4.20) 

The mass of the neutrino m is small. This is seen by rearranging (4.19) or 
(4.20) for m. 

5. CALCULATION OF m, ao AN D bo 

The coupling of the quartet ~b0 to the fields VeL (X), V~L(X), e (x), and 
Ix(x) gives rise to the parameter m of (4.4). This also determines the mass 
of the neutrinos. Suppose the scalar dp0 is a combination of Z and D bosons 
with appropriate quantum numbers such that 

d ~ o = ( ( Z D * + D Z * ) + u 3  0 ), (5.1) 
0 i ( - Z D *  + DZ*) + v3 

where ZD* is the scalar formed with the neutral Z-particle of the standard 
model, and D is the neutral boson of the left-right model. The combination 
should be built such that it is a scalar and has the other required quantum 
numbers. We do not go deeply into this matter now because it remains 
obscure. But (5.1) is enough to extract information. The quartet d~0 is coupled 
to ~e or ~IX. In the standard model Z is coupled to e~/~ through the real 
(gv)e~, where (gv)e~ is the vector coupling constant of e or Ix with Z (or D) 
in the neutral sector. Because of (5.1), the parameter m should be proportional 
to (gv)e2~ because m is real and positive. We therefore note that 

m oc (g v2)el x" (5.2) 

In an analogous way we assume that the scalars corresponding to the doublets 
~bL and 6R are proportional to ZZ* + VL and DD* + VR. If this is true, a 
comparison of the ~/se coupling constant in (4.5), (4.8), and (4.11) with the 
real coupling constant (gA)ep. of the Z with the axial vector current indi- 
cates that 

a ~ ~ (g 2A)el~, b ~ oc (g 2)e;x" (5.3) 
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From (4.17) and (4.18) we readily observe that very approximately 

a~ 1 - A  
b--~ ~ 1 + A" (5.4) 

To obtain (5.4) we ignored the terms m/MwL in the brackets of (4.17) and 
(4.18), as m is very small compared to MwL. On the other hand, from (4.19) 
and (4.20) we have 

m Z ~ _ l - A  
m~ 1 + A "  

A comparison of (5.3)-(5.5) shows that very approximately 

and hence 

(5.5) 

m~ + m~ ~ (g2)e w (5.7) 

Moreover, when we multiply (4.19) and (4.20) we observe that 
2 2 2, m emr ~ m and this shows that 

22 2 20C (g v)ela," (5.8) m emv, 

mdn~ cx {gZ~ 
mZ~ + m~ ~g~]' (5.9) 

where gv and gA are the vector and axial vector coupling constants of  the 
electron (or muon) to the Z particle or D particle. When we add (4.19) and 
(4.20) we get 2mMwLB. There is no loss of generality if we arrange this 
numerical factor 2 to cancel from the numerator and denominator of (5.9), 
and hence 

2men,. {g2v~ 
rnZe + m2 - K ~gAjev " (5.10/ 

In (5.10) K is a proportionality constant. It appears that (5.10) is more 
fundamental than the arguments that went to establish it. As a first approxima- 
tion we set K = 1; then 

2_rn~m• 
- ( 5 . 1 1 )  

m2e + m~ I g2 A}e~" 

m e z ~ (g 2)elL, m 2 ~ (g 2)el.~, (5.6) 
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Using (4.19) and (4.20) on the LHS of (5.11), we immediately find that 

(1-A2)l/2=(g---~v12, (5.12) 
\gAie o, 

A=[1--(g----~vl411'2 (5.13) 
\gAle~-I 

Using (5.13) in (4.19), we have 

m 2 = m M w L B { 1 - [ 1 -  

The above equation can also be written as, 

m~ = mMwL - -  
B 

2(g4vlgZA) [(g2 + gZ)V2 _ (g2 _ g2)U212. 

(5.14) 

(5.15) 

If we set, 

(gVlgA)~e 
B -  

(gVlgA)4r ' 

the masses of the electron and muon are given by 

(gv/'A)e4~ (gv,gA)4e{[ ( )4] m 2 = m M w L  1 - 1 - gv  \gA/e~-I 

(5.16) 

(5.17) 

(gv/gA)4eo. XgAler, J 

Equations (5.14) and (5.15) are special cases of (5.17). In the above, 
(gVlgA)4e = 1, where (gv)~e and (gA)~e are the vector and axial vector coupling 
constants of the neutrinos with the neutral Z or D bosons. The ratio 
(gv/gA)~e is equal to 1 if the neutrino is strictly left-handed. This is true in 
our case because these are Majorana neutrinos. In selecting the expression 
(5.16) for B, we wanted to generalize the above formulas to quarks as well 
(Raju, 1986a). 

With the known values of m e and m~ we can find sin20w since 
(gv/gg)2~ = (--1 + 4 sinE0w) 2. Here XL ---- sin20w is the Weinberg mixing 
parameter. When we insert m 2 and m 2 into (5.11) and treat XL as an unknown, 
we get a quadratic equation whose roots are, 

XL = 0.2254 or 0.2746. (5.19) 
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The first value agrees very well with the world average of  XL "~ 0.23. The 
second value will be interpreted here as xR = e21g 2, which appears in a 
gauge model based on the gauge group SU(2)L • SU(2)R • U(1) and gR is 
the gauge constant corresponding to SU(2)R. It should be noted that the sum 
XL + XR = 0.5 exactly in (5.19). It is the sum of  the roots of the quadratic 
equation obtained from (5.11). 

The neutral sector of  the left-right SU(2)L • SU(2)R • U(1) gauge 
model contains two neutral bosons Z and D. The weak part of the neutral 
interaction is given by (Raju, 1985) 

Hint ~__. gzJzLZ + gz(f3JzL -- (~x + [3)JzL)D, (5.20) weak 

JZL ----" J3L - -  XLAm, JZR = J3R - -  XRjem, 

XL + XR = 0.5. (5,25) 

From a world average XL = 0.23 and therefore xR = 0.27. These two roots 
are also obtained from (5.11). If we use the second of  (5.23) with the negative 
sign, we get 

2 (1  - XL)XL 
XR -- 3 (1 -- 2XL) (5.26) 

e 

gz x~/2(1 - -  x L ) l / 2  , 

(XLXR) la 
f~= (1 - x L - XR) 1/2 '  

x L/2(I - XL) 
ot + [~ x~/2(1 -- XL -- XR) u2" (5.21) 

The Z and D neutral bosons are mass eigenstates. If the neutrinos are strictly 
left-handed, then (gv/gA)Z,Z = (gv/gA)2,0 = 1. On the other hand, (gv/gA)e. 
of Z or D are not necessarily equal. To have unique masses for the electron 
and muon we require that 

(gvlg A)~,Z = (gvlgA)2~,O. (5.22) 

Equation (5.22) is equivalent to the following two relations: 

(gvlga)e~,z = +-(gvlgA)e~.O. (5.23) 

The above relation with the positive sign yields, 

(a  + 13)4xR - 4[~XL -- Ot 
(1 -- 4XL) = , (5.24) 

a + 2 1 3  

and hence 
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In the above when we use XL = 0.23 it does not lead to an XR = 0.27 and 
we have no idea whatsoever how to interpret (5.26). The Majorana mass of 
the neutrinos is given by, 

mem~(gvl2 ~ 6.5 eV, (5.27) 
m -  MWL \gA/ep, 

where Mice = 80 GeV and XL = 0.2254 are used. The neutrinos VeL and V~L 
are Majorana particles with equal mass and opposite CP parities. For the -r 
lepton and its neutrino we have, 

m 2 = m ~ M w L { 1  + [1--(gv14]l/2~, \g~A],,..I J (5.28) 

where the mass of the "r neutrino rr~ = 25 MeV, if rrt~ = 2GeV. Here the 
constant B is set equal to 1. The "r neutrino does not fit into the above analysis. 

6. QUARK MASSES 

The analysis carded out appears to be quite general. In (5.17) the product 
mMwL involves the neutrino mass, whose charge is different from the electron 
charge. Like the neutrinos, there are two quarks d and u, which have almost 
equal constituent masses. These are charged particles and hence they cannot 
have only Majorana mass. However, if (5.17) is any guide, we can assert that, 

[ ( 71l'   = mdMwL (gvlgA)asb ~1 -- 1 -- gv m 2 (6.1) 
(gv[gA)4ct [ \gA/uctd j '  

m~=rnuMwL(gv/ga)4ct( [ (gvl4]'#2 } 
(gv/gA)4s b 1 -  1 - -  \gA/asbJ 

In (6.1) and (6.2) 

(6.2) 

7 gA/u \gAD 

Here gv and gA are the vector and axial vector coupling constants of the 
respective particles (indicated by the subscripts) with the Z boson. From 
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conventional wisdom if we assume that m d ~ m, = 0.3 GeV, and if MWL = 
80 GeV, then for XL = 0.2254, we have, 

mc = 1.7 GeV and ms = 0.57 GeV. (6.3) 

The Cabibbo angle is given by (Raju, 1986a-c, 1987), 

0c = 02 - 01. ( 6 . 4 )  

Where 

tan 02 = m~dd and tan01 = m~m ~ . (6.5) 

From the above values of the masses we note that 

0~-- 13011 ', (6.6) 

which is an excellent result. The masses of the heavy quarks t and b are not 
given by expressions similar to (5.18). But all our predictability rests on 
(5.11). By a mere change of this expression we find that 

2--mznt-- - ( g v ]  4 , (6.7) 
m 2 + m 2 \gA/uct 

2m,mb __(g...VV) 4 " (6.8) 
m 2 + m 2 \gA/dsb 

The similarity of these expressions to (5.11) is striking and therefore the 
constants gv and gA play a vital role in determining the masses of all fermions. 
From (6.7) and (6.8) we note that for XL = 0.2254, 

m t =  134.23 GeV and mb -- 4.69 GeV. (6.9) 

Indeed these values are quite encouraging (Schwarzschild, 1987). Approxi- 
mate expressions like (6.1) and (6.2) can also be found for the masses of t 
and b quarks from (6.1), (6.2), (6.7), and (6.0). Thus we have 

mt ~ - (gv) 4 ] 1/2/1/2 
2 ~ ( g v / g A ) 2 b ( 1  [ 1 - - -  (6.10) 

(gv/gg)6ct \gg/uctd j "  

The above expression can be approximated to, 

(gv/gA)4sb 
m 2 ~ 2mdMwL (gv/gA)Sc t �9 (6.1 l) 
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in a similar way for the b quark we find that, 

no ~ 2 ~  (gv/gA)2ct [1--{1--(g-'-~VI4 /112] 1/2, 

(gv[gA)6b \gA/dsb J I 

and 

(6.12) 

(gv/gg)~ct 
m 2 ~" 2m,  MwL (gv/gA)Sb. (6.13) 

In one stretch, we have shown that the masses of all the known fermions are 
closely linked to their vector and axial vector coupling constants with the 
Z boson. 

7. SUMMARY 

We have found that the left-handed neutrinos VeL and V~L are Majorana 
neutrinos with equal mass and with opposite CP parities. The existing experi- 
mental data are not incompatible with the assumption that to the charged 
leptons (e.g., e and Ix) there corresponds one four-component neutrino whose 
LH and RH components enter into the weak lepton currents. 

Using only the masses of the electron and muon, we have determined 
the Weinberg mixing parameters XL and xR and the mass of their neutrinos. 
With the help of m, and m d we found the constituent masses of  mo mt, me, 
and ms quarks, all of which have the expected values. In addition, in one 
stretch we have shown that the masses of all fermions are intimately connected 
with vector and axial vector coupling constants of the fermions with the Z 
(or D) bosons. We found only one set of the masses of quarks with XL ---- 
0.2254. The Cabibbo angle computed here turns out to be rather exact. With 
the values of the masses computed here, the exact KM matrix can be evaluated. 
In the case of all the fermions the masses are determined by (gv[gA) 2 ratios 
or higher powers of it. Until now no serious attention has been paid to this 
connection. When we wanted to bring in the (gVlgA) 2 connection to the 
masses, we were led to the idea that the Higgs scalars are bound states of 
neutral Z and D bosons with appropriate quantum numbers. When a spin- 
one particle is combined with another spin-one particle, we will have 2,1,0 
spin particles. We used only the scalar particles. The fate of the remaining 
ones needs to be studied seriously and accounted for. This probably leads to 
more exciting physics. Incidentally, the mass of the standard Higgs scalar 
d~L must be around 2mz = 180 GeV, as it is a bound state of Z and Z* (Osland 
and Wu, 1992). The two Majorana masses of the neutrinos are equal and 
hence they correspond to a single four-component field v(x) which has a 
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Dirac mass m, and the Majorana neutrinos have opposite CP parities. The 
tan-neutrino problem is a separate one and it remains to be solved. 
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